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Abstract -  Consider the problem of compressing
a uniformly quantized 11D source. A traditional ap-
proach is to assign variable length codewords to the
quantizer output symbols or groups of symbols (e.g.,
Huffman coding). Here wc propose an alternative so-
Jution: assign a fized length binary codeword to each
output symbolin such a way thata zero is more likely
thanaone iu every codeword bit position. This re-
dundancy is then exploited using a block-adaptive bi-
nary arithmnetic encoder to compress the data. This
technique is simple, has low overhead, and cau beused
as a progressive transmissionsystem.

1. ENCODING PROCEDURE

A continuous source with probability density f(z)is quantized
by a uniform quantizer whose output symbols are mapped to
b bit codewords. The first codeword bit indicates the sign of
the quantizer reconstruction point. Fach successive bit gives
a furtherlevel of resolution and is assigned so that zeros are
more concentrated near thcorigin. Figure 1 illustrates this
mapping for b= 4.
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Iig. 1: Example of a pdf and codeword assignment for a four bit
uniform quantizer.

We assumie that f(z) is symmetric about = 0 and nonin-
creasing with |#| so that the probability is more concentrated
near the origin. Such sources arc not uncommon in practice.
Because of this assumption, the codeword assignment ensuies
that a zero will be more likely than a one inevery bit position.

Codewords corresponding to N adjacent source samples arc
grouped together. The N sign bits of the codeword scquence
arc encoded using ablock-adaptive binary arithmetic encoder.
Thenthe N next, most significant bits arc encoded, and so
011. Kach bit sequence is encoded independentl - at the sth
stage the arithmetic coder estimates the unconditional proba-
bility that the tth codeword bil is a zero. This can be viewed
as a simple progressive transmission system- each subsequent
codeword bit gives a further level of detail about the source.

The obvious loss is that we lose the benefit of inter-bit
dependency. g, the probability that the second bit is a
zero is not in general independent of the value of the first bit,
though the encoding procedure acts as if it were. However,
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for many sources (c¢.g., Gaussian and lLaplacian), this loss is
small, and thistechuique often has lower redundancy than
Huflman coding, because the arithmetic coder is not required
to produce an output syinbol for every input symbol.

The independent trcatment of the codeword bits provides
benefits. T'he overhead required increases linearly in
b. By contrast, becausce the number of codewords is 2% the
overliead of block-adaptive Huflimman coding increases expo-
nentially in b unless we are able to cleverly exploit additional
information about the source [2].
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11. ARITHMETICENCODER OPERATION

A binary arithmetic encoder has a single parameter P, the
anticipated probability of a zero. W cecncode an N-length
sequence of bits block-ad aptively, i.e, the encoder output sc-
quence is preceded by overhead bits that identify to the de-
coder the value of 1° being used. By using log, N bits of
overhead, we could specifly the exact frequency of zeros in the
sequcnice, but by using fewer bits we can exchange accuracy
for lower overhead. )l m overhead bits arm used, we can select
2'" probabilities {p1, p2, ... p2m } that can be used as values
for 1. This amounts to using line segments to approximate
the binary entropy function [1].

Omitting the remaining details, we find that for large N,
to minimize the maximumredundancy (including overhead),
the probability values arc

p,z% {l - sin (ﬁ[]% 2‘“_2201

and theoptimalnumber of overhead bits m is approximately-
1
me »210g,2 N +log, n—1.

The encoder counts the number of zeros in the input se-
quence to determines the probability index:, WC transmit
m bits to identify i, followed by the arithmetic encoder out-
put scquence. Theencoder and decoder both usc parameter
P= p,.

111. PERFORMANCE
The rate B of the bit-wise arithmetic coder is approximately

b 1 101
R H(Q)+ R+ N 2Ing Tlogam - §+510g,2N

here H(Q) is the entropy of the quantized sourceand R is the
redundancy due to independent treatment of the codeword
bits.
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1 Introduction

Co nsider the problem of compressing a uniformly g uantized IHD source. A traditional
approac h is to assign variable lenigth codewords to the quantizer outputl symbols or
groups of symbols (e.g., Hufman Coding). Herew e 1)1'()])0s(C an alternative solution:
assigh a fized len gth bhinary codeword to cach output symbol in such a way that
a zero is more likely thiary a one in every codeword bit position.  This redunidancy
i s then exploited using a block-adaptive binary ar ithmetic encoder to compress the
data. This technique is simple, has low overhead, and can be used as a progressive
transmission system.

2 Encoding Procedure

A continuous source with probability density f(2) is quantized by a uniform quantizer
whose outputl symbols are mapped to b bit codewords. The fivst codeword bit indicates
the sign of the quantizer reconstruction point. 1 ach successive bit gives a further
level of resolution and is assigned so th at zeros are more concentrated near the origin.
Iigure Tillustrates this mapping for b = 4.

We assume that f(2) is symmetric about 2 2= O and nonincrcasing with |«| so that
the probability is more concentrated near the origi 1. Such sources are not uncommon
i practice. Because of this assumption, the codeword assignment ¢ nsures that a zero
will bhemorelikely thian a one in every bit position.

Codewords corresponding to N adjacent sour ce samples are grouped together.
The N sign bits of” the codeword sequence are ¢ ncoded using a block-adaptive binary
arithmetic encoder. I hen the N next most signilicant bits arc enicoded, and so on.
Isach bit scquence is encoded independently- at the ith st age thie arithmetic coder
esti mates the un conditional probability that the th codeword bit is a zero. This can
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IMigure 10 Fxample of a pdf an d codeword assignment for a fow hit uniform quantizer.

he viewed as a simple progressive transmission system  cach subsequent codeword
bit gives a further level of detail about the source.

The obvious loss is that we lose the benefi - of inter-bit dependency. 1.g., the
probability that the sccond bit is a zero is notin general independent of the value of
the first bit;) thou gh the encoding procedure acts as if it were. However, this loss is
often small, and for many practical sources, this techmique has lower redundancy than
Iuflman coding, hecause the arithmetic coder is not required to produce an output
symbol for every input symbol.

The independent treatment of the codeword bits provides some beniefits, As well
sce m the Sceetion 4, {he overhead required inercases linearly in b, By contrast,
because the number of codewords is 2°, the overlicad of block-adaptive Huffman
coding increases exponentially in b unless we are able to cleverly exploit additional
information about the source [2].

Another feature of this techniqueis that becanse it is progressive, it provides a
simple means of handling a rate constraint: we simply encode the blocks of N hits until
the allocated rate is exhausted. The distortion is automatically reduced for “more
compressible” sources  when the initial codeword bits ca n be efficiently encoded, we
arc able to send additional (less significant) bits, so the 11 cod 1 resolutionimcr cas es
automatically.

3 Arithmetic Encoder

A binary arithmetic encoder has a single parameter 2] the anticipated probability of
a zero. We encode an N-length sequence of bits block-adaptively, i.c.; the encoder
oulpul sequence is preceded by overhead bits that identify 1o the decoder the value of
1? being used. By using log, N bits of overhead, we could specily the exact frequency
of zeros 1 the sequence, but by using fewer bits we can exchange acenracy for lower
overhead. In this section we summarize results fonnd in [1].




The average rate of a binary arithmetic encoder for an N-length sequence is

R = h(2,17) 4 kA ;/ 0
;\’
where

L( P, ]”)é - Iog, - (1 - F)log,(t - )

which is a line tangent to the binary entropy function H(I”) at the point /1= [, 17
is the fraction of bits in the sequence that are zero, and the quantity & represents the
penalty from finite precision arithmetic performed by the encoder. At 9 bit resolution,
simulations indicate that & is approximately cqual 1o .32 bits.

I 1 overhicad bits are nsed, we can select 2" probabilitics {p1, py, ... pom} that
can be used as values for 2. Irom (1), we sce that this amounts to using line segments
to approximate the binary entropy function, as illustrated in Figure 2.
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IMigure 2: Binary entropy and line segment approximation.

Omitting the remaining details, we find that for large N, to minimize the maxi-
mum redundancy (including overhead), the probability values are

l M 7 ) N
i ~ é 1 — sin "_)m'*i] [] “1 21— 21])
and the optimal nur nber of overhead bits is approximately

]
ma g log, N 4 log, 7 - 1.




The encoding operation is straightforward. The encoder computes I by connting
he number of zeros in the input sequence and determines the probability index

. 1 sn 20 1)

The encoder uses e bits to identify 7, followed by the arithmetic encoder output
sequence. The encoder and decoder both use paramecter 2 = p,.

4  Performance
The rate of the bit-wise arithmetic coder is approximately

)
:_.:!N:‘:__ ~ \\Am&v 4 R+ r\~< HN_“_N -} _Om - w -+ I -} ,M_Cﬁw N
were H(Q) is the entropy of the quantized source and R is the redundancy due to
independent treatment of the codeword bits
Iu Figure 3 we Hlot simulated rate-distortion curves for bit- wise arithmetic coding
applied to Gaussian and Laplacian sources. For coniparison, we also show the perfor-
mance of block-adaptive Huflman coding and block-adaptive combined zero-runlength

and Huffman coding (denoted “ZR11” in the figure).
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Figure 3: Performance of bit-wise arithmetic, Hnflman, and combined zero-runlength
and Hudlman coding. a) Gaussian source, b= A,N = 512, h) (aussian source, b =
4. N = 256, ¢) Laplacian source, b=4,N = hl2.d) Laplacian source, b =4, N = 256.




